Acta Crystallographica Section E
 Structure Reports
 Online
 ISSN 1600-5368
 Bis(4-fluorobenzyl- κ C)bis(3-methyl-sulfanyl-1,2,4-thiadiazole-5-thiolato$\left.\kappa^{2} N^{4}, S^{5}\right) \mathbf{t i n}(I V)$

Ai-Xia Deng, ${ }^{\text {a* }}$ Qian Xie, ${ }^{\text {a }}$ Mou-Yong Teng ${ }^{\text {a }}$ and Guo-Jia Fu^{b}

${ }^{\text {a }}$ College of Materials Science and Engineering, Liaocheng University, Shandong 252059, People's Republic of China, and ${ }^{\text {b }}$ College of Chemistry and Chemical Engineering, Liaocheng University, Shandong 252059, People's Republic of China Correspondence e-mail: dengaixia@lcu.edu.cn

Received 2 November 2011; accepted 5 November 2011

Key indicators: single-crystal X-ray study; $T=298 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.005 \AA$; R factor $=0.025 ; w R$ factor $=0.070$; data-to-parameter ratio $=15.0$.

The mononuclear title molecule, $\left[\mathrm{Sn}\left(\mathrm{C}_{7} \mathrm{H}_{6} \mathrm{~F}\right)_{2}\left(\mathrm{C}_{3} \mathrm{H}_{3} \mathrm{~N}_{2} \mathrm{~S}_{3}\right)_{2}\right]$, has 2 symmetry. The $\mathrm{Sn}^{\mathrm{IV}}$ atom, located on a twofold rotation axis, is in a skew trapezoidal-bipyramidal geometry, with the basal plane defined by two S, N-chelating 3-methylsulfanyl-1,2,4-thiadiazole-5-thiolate ligands. The apical positions are occupied by the C atoms of two 4 -fluorobenzyl groups.

Related literature

For related structures, see: Ma et al. (2005); Zhang et al. (2005); Zhang et al. (2009).

Experimental

Crystal data
$\left[\mathrm{Sn}\left(\mathrm{C}_{7} \mathrm{H}_{6} \mathrm{~F}\right)_{2}\left(\mathrm{C}_{3} \mathrm{H}_{3} \mathrm{~N}_{2} \mathrm{~S}_{3}\right)_{2}\right]$
$M_{r}=663.43$
Monoclinic, $C 2 / c$
$a=13.9011$ (14) \AA
$b=17.769$ (2) A
$c=10.712$ (1) \AA
$\beta=104.081$ (2) ${ }^{\circ}$

Data collection

Bruker SMART 1000 CCD areadetector diffractometer
Absorption correction: multi-scan (SADABS; Bruker, 2001)
$T_{\text {min }}=0.542, T_{\text {max }}=0.732$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.025$	151 parameters
$w R\left(F^{2}\right)=0.070$	H-atom parameters constrained
$S=1.15$	$\Delta \rho_{\max }=0.39 \mathrm{e}^{-3}$
2269 reflections	$\Delta \rho_{\min }=-0.55 \mathrm{e}^{-3}$

Table 1
Selected bond lengths (\AA).

Sn1-C4	$2.155(3)$	Sn1-N1	$2.913(3)$
Sn1-S2	$2.4703(8)$		

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL).

The authors thank the State Key Laboratory of Crystal Materials, Liaocheng University, China, and the School Science Foundation of Liaocheng University for financial support.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: XU5378).

References

Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
Ma, C.-L., Zhang, J.-H., Tian, G.-R. \& Zhang, R.-F. (2005). J. Organomet. Chem. pp. 519-533.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Zhang, J.-H., Zhang, R.-F., Ma, C.-L. \& Wang, D.-Q. (2005). Acta Cryst. E61, m2075-m2077.
Zhang, J., Zhang, R., Ma, C., Wang, H. \& Wang, D. (2009). Acta Cryst. E65, m1030.

supplementary materials

Acta Cryst. (2011). E67, m1735 [doi:10.1107/S1600536811046654]

Bis(4-fluorobenzyl- κC)bis(3-methylsulfanyl-1,2,4-thiadiazole-5-thiolato- $\kappa^{2} N^{4}, S^{5}$)tin(IV)

A.-X. Deng, Q. Xie, M.-Y. Teng and G.-J. Fu

Comment

In the title compound, from Fig.1, as far as the weak $\mathrm{Sn}-\mathrm{N}$ interactions are concerned, the central $\mathrm{Sn}(\mathrm{IV})$ atom is situated in a skew-trapezoidal bipyramidal geometry, with the basal plane defined by two symmertrically chelating 3-methylmer-capto-5-mercapto-1,2,4-thiadiazole ligands. The apical positions are occupied by two 4-fluorobenzyl groups. The coordination geometry of the $\mathrm{Sn}(\mathrm{IV})$ atom can also be described as distorted trans octahedral, with atoms N1, N1A, S2 and S2A occupying the equatorial positions, and atoms C 4 and C 4 A occupying the axial positions. The molecular structure consists of a monomer with a hexa-coordinated Sn atom surrounded by two S atoms and two N atoms of the ligand, and two 4fluorobenzyl groups.

The $\mathrm{Sn}-\mathrm{S}$ bond distances and weak $\mathrm{Sn}-\mathrm{N}$ bond lengths are 2.4703 (8) \AA and $2.913 \AA$, respectively. The bite angles $\mathrm{S} 2 — \mathrm{Sn} 1-\mathrm{N} 1$ and $\mathrm{S} 2 \mathrm{~A}-\mathrm{Sn} 1-\mathrm{N} 1 \mathrm{~A}$ of title compound (59.12 ${ }^{\circ}$) can be reconciled with a skew-trapezoidal bipyramidal geometry, although this geometry can also be considered as distorted trans octahedral. The structure of compound is close to those reported for a series of diorganotin(IV) 2-mercapto-4-methylpyrimidine derivatives (Ma et al., 2005; Zhang et al., 2005; Zhang et al. 2009). There is a good correspondence in their structure parameters: the $\mathrm{Sn}-\mathrm{S}$ distances lie in the range $2.477-2.526 \AA$ and the $\mathrm{Sn}-\mathrm{N}$ distances in the range $2.650-2.933 \AA$.

Experimental

The 3-Methylmercapto-5-mercapto-1,2,4-thiadiazole (2 mmol) was added to the solution of ethanol 20 ml with sodium ethoxide (2 mmol), and the mixture was stirred for 30 minutes, then add $\mathrm{Di}(4$-fluorobenzyl)dichlorotin(IV) (1 mmol) to the mixture, continuing the reaction for 12 h at 318 k . After cooling down to room temperature, filtered it. The solvent of the filtrate was gradually removed by evaporation under vacuum until solid product was obtained. The solid was then recrystallized from ether-dichloromethane and colorless crystals suitable for X-ray diffraction were obtained (m.p. 410-412 K). Analysis, calculated for $\mathrm{C}_{20} \mathrm{H}_{18} \mathrm{~F}_{2} \mathrm{~N}_{4} \mathrm{~S}_{6} \mathrm{Sn}$: C 36.21, H 2.73, N 8.44, F 5.73; found: C 36.17, H 2.70, N 8.50, F 5.76\%.

Refinement

All H atoms were placed geometrically and treated as riding on their parent atoms, with methylene $\mathrm{C}-\mathrm{H}$ distances of 0.97 \AA, methyl and thiadiazole $\mathrm{C}-\mathrm{H}$ distances of $0.96 \AA$.

supplementary materials

Figures

Fig. 1. The molecular structure of the compound, showing 30% probability displacement ellipsoids.

Fig. 2. The unit cell of the title compound.

Bis(4-fluorobenzyl-кC)bis(3-methylsulfanyl-1,2,4-thiadiazole-5- thiolato- $\kappa^{2} N^{4}, S^{5}$)tin(IV)

Crystal data

$\left[\mathrm{Sn}\left(\mathrm{C}_{7} \mathrm{H}_{6} \mathrm{~F}\right)_{2}\left(\mathrm{C}_{3} \mathrm{H}_{3} \mathrm{~N}_{2} \mathrm{~S}_{3}\right)_{2}\right]$
$M_{r}=663.43$
Monoclinic, C2/c
Hall symbol: -C 2yc
$a=13.9011$ (14) \AA
$b=17.769(2) \AA$
$c=10.712(1) \AA$
$\beta=104.081(2)^{\circ}$
$V=2566.4(5) \AA^{3}$
$Z=4$
$F(000)=1320$
$D_{\mathrm{x}}=1.717 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 4420 reflections
$\theta=2.5-28.2^{\circ}$
$\mu=1.52 \mathrm{~mm}^{-1}$
$T=298 \mathrm{~K}$
Block, colourless
$0.46 \times 0.32 \times 0.22 \mathrm{~mm}$

Data collection

Bruker SMART 1000 CCD area-detector diffractometer
Radiation source: fine-focus sealed tube graphite
φ and ω scans
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
$T_{\text {min }}=0.542, T_{\text {max }}=0.732$

2269 independent reflections
2032 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.025$
$\theta_{\text {max }}=25.0^{\circ}, \theta_{\text {min }}=1.9^{\circ}$
$h=-16 \rightarrow 16$
$k=-21 \rightarrow 15$

6371 measured reflections
$l=-12 \rightarrow 12$

Refinement

Refinement on F^{2}

Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.025$
$w R\left(F^{2}\right)=0.070$
$S=1.15$
2269 reflections
151 parameters
0 restraints

Primary atom site location: structure-invariant direct methods
Secondary atom site location: difference Fourier map
Hydrogen site location: inferred from neighbouring sites
H -atom parameters constrained
$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.0343 P)^{2}+2.4296 P\right]$
where $P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3$
$(\Delta / \sigma)_{\max }=0.002$
$\Delta \rho_{\text {max }}=0.39 \mathrm{e} \AA^{-3}$
$\Delta \rho_{\text {min }}=-0.55$ e \AA^{-3}

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two 1.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving 1.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating R factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $\left(\AA^{2}\right)$

	x	y	z	$U_{\mathrm{iso}}{ }^{*} / U_{\mathrm{eq}}$
Sn1	0.5000	$0.655810(14)$	0.2500	$0.03453(11)$
S1	$0.62395(8)$	$0.59377(6)$	$-0.11579(9)$	$0.0675(3)$
S2	$0.56268(6)$	$0.55499(4)$	$0.13199(7)$	$0.0467(2)$
S3	$0.61389(9)$	$0.82296(6)$	$-0.08129(10)$	$0.0711(3)$
F1	$0.9231(2)$	$0.50566(15)$	$0.6055(3)$	$0.1095(10)$
N1	$0.58816(19)$	$0.69118(15)$	$0.0366(2)$	$0.0437(6)$
N2	$0.6347(3)$	$0.6831(2)$	$-0.1563(3)$	$0.0681(9)$
C1	$0.5912(2)$	$0.61779(18)$	$0.0233(3)$	$0.0426(7)$
C2	$0.6129(3)$	$0.7252(2)$	$-0.0662(3)$	$0.0530(8)$
C3	$0.6074(3)$	$0.8515(2)$	$0.0764(4)$	$0.0667(10)$
H3A	0.5470	0.8332	0.0936	0.100^{*}
H3B	0.6088	0.9055	0.0815	0.100^{*}
H3C	0.6631	0.8313	0.1387	0.100^{*}
C4	$0.6259(2)$	$0.71003(17)$	$0.3750(3)$	$0.0458(7)$
H4A	0.6534	0.7464	0.3259	0.055^{*}
H4B	0.6041	0.7370	0.4420	0.055^{*}
C5	$0.7043(2)$	$0.65510(15)$	$0.4355(3)$	$0.0360(6)$

C6	$0.7802(2)$	$0.6374(2)$	$0.3788(3)$	$0.0548(8)$
H6	0.7821	0.6599	0.3011	0.066^{*}
C7	$0.8538(3)$	$0.5867(3)$	$0.4351(4)$	$0.0715(12)$
H7	0.9050	0.5751	0.3964	0.086^{*}
C8	$0.8491(3)$	$0.5543(2)$	$0.5482(4)$	$0.0655(10)$
C9	$0.7749(3)$	$0.5691(2)$	$0.6068(4)$	$0.0612(9)$
H9	0.7729	0.5454	0.6836	0.073^{*}
C10	$0.7031(2)$	$0.6196(2)$	$0.5500(3)$	$0.0494(8)$
H10	0.6522	0.6304	0.5897	0.059^{*}

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Sn1	$0.03463(17)$	$0.03564(17)$	$0.03042(17)$	0.000	$0.00231(11)$	0.000
S1	$0.0884(7)$	$0.0725(6)$	$0.0532(5)$	$-0.0119(5)$	$0.0395(5)$	$-0.0207(5)$
S2	$0.0602(5)$	$0.0405(4)$	$0.0424(4)$	$-0.0011(3)$	$0.0183(4)$	$-0.0062(3)$
S3	$0.0963(8)$	$0.0655(6)$	$0.0573(6)$	$-0.0062(5)$	$0.0300(6)$	$0.0142(5)$
F1	$0.0829(18)$	$0.0850(17)$	$0.133(2)$	$0.0367(14)$	$-0.0270(16)$	$-0.0129(17)$
N1	$0.0481(15)$	$0.0487(15)$	$0.0385(14)$	$-0.0042(12)$	$0.0190(12)$	$-0.0013(11)$
N2	$0.084(2)$	$0.081(2)$	$0.0493(18)$	$-0.0115(19)$	$0.0362(17)$	$-0.0060(16)$
C1	$0.0450(17)$	$0.0514(19)$	$0.0333(16)$	$-0.0034(14)$	$0.0133(13)$	$-0.0074(13)$
C2	$0.0525(19)$	$0.062(2)$	$0.0479(19)$	$-0.0058(16)$	$0.0188(16)$	$0.0016(16)$
C3	$0.084(3)$	$0.051(2)$	$0.067(3)$	$-0.0025(19)$	$0.021(2)$	$0.0029(17)$
C4	$0.0427(17)$	$0.0433(17)$	$0.0462(18)$	$-0.0074(13)$	$0.0006(14)$	$-0.0081(14)$
C5	$0.0308(14)$	$0.0436(16)$	$0.0310(15)$	$-0.0080(11)$	$0.0027(11)$	$-0.0080(12)$
C6	$0.0418(18)$	$0.081(2)$	$0.0431(18)$	$-0.0046(17)$	$0.0131(15)$	$-0.0049(17)$
C7	$0.041(2)$	$0.097(3)$	$0.075(3)$	$0.0132(19)$	$0.0120(19)$	$-0.026(2)$
C8	$0.051(2)$	$0.056(2)$	$0.076(3)$	$0.0100(17)$	$-0.0116(19)$	$-0.0126(19)$
C9	$0.059(2)$	$0.066(2)$	$0.050(2)$	$-0.0059(18)$	$-0.0021(17)$	$0.0096(17)$
C10	$0.0416(17)$	$0.068(2)$	$0.0384(17)$	$-0.0042(15)$	$0.0087(14)$	$-0.0011(15)$

Geometric parameters ($\AA,^{\circ}$)

$\mathrm{Sn} 1-\mathrm{C} 4$	$2.155(3)$	$\mathrm{C} 3-\mathrm{H} 3 \mathrm{~B}$	0.9600
$\mathrm{Sn} 1-\mathrm{C} 4^{\mathrm{i}}$	$2.155(3)$	$\mathrm{C} 3-\mathrm{H} 3 \mathrm{C}$	0.9600
$\mathrm{Sn} 1-\mathrm{S}^{\mathrm{i}}$	$2.4703(8)$	$\mathrm{C} 4-\mathrm{C} 5$	$1.489(4)$
$\mathrm{Sn} 1-\mathrm{S} 2$	$2.4703(8)$	$\mathrm{C} 4-\mathrm{H} 4 \mathrm{~A}$	0.9700
$\mathrm{Sn} 1-\mathrm{N} 1$	$2.913(3)$	$\mathrm{C} 4-\mathrm{H} 4 \mathrm{~B}$	0.9700
$\mathrm{~S} 1-\mathrm{N} 2$	$1.663(4)$	$\mathrm{C} 5-\mathrm{C} 6$	$1.376(4)$
$\mathrm{S} 1-\mathrm{C} 1$	$1.715(3)$	$\mathrm{C} 5-\mathrm{C} 10$	$1.383(4)$
$\mathrm{S} 2-\mathrm{C} 1$	$1.727(3)$	$\mathrm{C} 6-\mathrm{C} 7$	$1.387(5)$
$\mathrm{S} 3-\mathrm{C} 2$	$1.745(4)$	$\mathrm{C} 6-\mathrm{H} 6$	0.9300
$\mathrm{~S} 3-\mathrm{C} 3$	$1.786(4)$	$\mathrm{C} 7-\mathrm{C} 8$	$1.356(6)$
$\mathrm{F} 1-\mathrm{C} 8$	$1.370(4)$	$\mathrm{C} 7-\mathrm{H} 7$	0.9300
$\mathrm{~N} 1-\mathrm{C} 1$	$1.314(4)$	$\mathrm{C} 8-\mathrm{C} 9$	$1.357(6)$
$\mathrm{N} 1-\mathrm{C} 2$	$1.371(4)$	$\mathrm{C} 9-\mathrm{C} 10$	$1.370(5)$
$\mathrm{N} 2-\mathrm{C} 2$	$1.313(4)$	$\mathrm{C} 9-\mathrm{H} 9$	0.9300
$\mathrm{C} 3-\mathrm{H} 3 \mathrm{~A}$	0.9600	$\mathrm{C} 10-\mathrm{H} 10$	0.9300

sup-4

supplementary materials

$\mathrm{C} 4-\mathrm{Sn} 1-\mathrm{C} 4^{\text {i }}$	126.88 (17)	C5-C4-H4A	109.2
$\mathrm{C} 4-\mathrm{Sn} 1-\mathrm{S} 2{ }^{\text {i }}$	109.90 (9)	$\mathrm{Sn} 1-\mathrm{C} 4-\mathrm{H} 4 \mathrm{~A}$	109.2
$\mathrm{C} 4{ }^{\mathrm{i}}-\mathrm{Sn} 1-\mathrm{S} 2{ }^{\text {i }}$	107.95 (9)	C5-C4-H4B	109.2
C4-Sn1-S2	107.95 (9)	Sn1-C4-H4B	109.2
$\mathrm{C} 4{ }^{\mathbf{i}}$ - Sn $1-\mathrm{S} 2$	109.90 (9)	H4A-C4-H4B	107.9
$\mathrm{S} 2{ }^{\text {i }}$ - $\mathrm{Sn} 1-\mathrm{S} 2$	87.03 (4)	C6-C5-C10	117.6 (3)
N2-S1-C1	92.81 (15)	C6-C5-C4	121.1 (3)
C1-S2-Sn1	92.51 (10)	C10-C5-C4	121.3 (3)
C2-S3-C3	101.08 (16)	C5-C6-C7	121.3 (3)
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 2$	109.2 (2)	C5-C6-H6	119.3
C2-N2-S1	107.4 (2)	C7-C6-H6	119.3
N1-C1-S1	111.3 (2)	C8-C7-C6	118.3 (3)
N1-C1-S2	123.4 (2)	C8-C7-H7	120.9
S1-C1-S2	125.31 (19)	C6-C7-H7	120.9
N2-C2-N1	119.2 (3)	C7-C8- 9	122.5 (3)
N2-C2-S3	119.3 (3)	C7-C8-F1	118.3 (4)
N1-C2-S3	121.5 (2)	C9-C8-F1	119.1 (4)
S3-C3-H3A	109.5	C8-C9-C10	118.4 (3)
S3-C3-H3B	109.5	C8-C9-H9	120.8
H3A-C3-H3B	109.5	C10-C9-H9	120.8
S3-C3-H3C	109.5	C9-C10-C5	121.9 (3)
H3A-C3-H3C	109.5	C9-C10-H10	119.1
$\mathrm{H} 3 \mathrm{~B}-\mathrm{C} 3-\mathrm{H} 3 \mathrm{C}$	109.5	C5-C10-H10	119.1
C5-C4-Sn1	112.03 (19)		
Symmetry codes:			

supplementary materials

Fig. 1

Fig. 2

